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1. INTRODUCTION

An important problem area, encompassing many special questions which
have been treated in the literature, is that of characterizing the restrictions
of functions in some prescribed class to a subset of their domain, and where
possible, "reconstructing," i.e., extrapolating a function from its restriction.
For example, if [[]) denotes the unit disc in the complex plane and E c [[]) we
can ask, given a complex-valued function cp on E, whether or not there is a
function I in the Hardy space H 2

( [[]) satisfying

I(z) = cp(z), all z E E. (1.1 )

This question has two aspects, which of course are intimately connected:

(i) determining whether such an I exists and

(ii) finding a method to calculate I when it exists (of course, for f to
be unique will require that E be, in some sense, sufficiently large).

Typically, problems of this kind are "ill posed" in the sense that the set
of functions cp on E for which an I exists satisfying (1.1) is "unstable with
respect to small perturbations," i.e., fails to be an open set in most
reasonable topologies, and this motivates problems of the type

(iii) Let f.1 be a positive measure on E, and cp a given complex-valued
function in L 2(E; df.1). For a given positive number M, find that IE H 2([D)
with III1I ~ M such that

is mInImum.
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386 HAROLD S. SHAPIRO

(Of course, we need assumptions implying that the restriction map
fH fiE is continuous from H 2(IT]) ---+ L 2(E; d/l) if this problem is to make
sense. Since the above model problem is here used only to illustrate our
general purpose we will not now examine such technical points more
closely.)

In Section 2 of this paper we study an abstract problem in which the role
of the above restriction map is played by a bounded linear operator T from
a Hilbert space X to a Hilbert space Y, which moreover always will be
assumed injective, with dense range. That these hypotheses are satisfied in
many "restriction-extension problems" of the above type that have been
studied in the literature will be seen in Section 3, where various concrete
problems are examined in the light of the general results obtained in Sec
tion 2. Section 3 should be regarded mainly as programmatic, to illustrate
the kinds of special problems that fit into our general framework and also
to pinpoint concrete problems that seem of interest for detailed
investigation later.

In the case where T is compact the analogous theory was developed
(with different notations) in [12]. There the spectral resolution of T*T in
terms of its eigenfunctions

(1.2)

and correspondingly

(1.3)

played the central role; in concrete problems where T is a restriction
operator the {xn } correspond to an orthonormal basis in the basic space X
(which would be H 2

( IT]) in the above example) and then the orthogonality
of the Yn = TXn means that these functions (or rather, their restrictions) are
also orthogonal in a second sense (in the space L 2(E; d/l), in the above
example). Eqs. (1.2) and (1.3) Which, on the one hand, explain this
phenomenon of "double orthogonality" that crops up in so many places,
and also imply a constructive proof of the unitary equivalence of T*T and
TT*, are in this case at least formally simple due to the compactness of
these operators (although finding the eigenvalues and eigenfunctions in
concrete problems is usually difficult, and seldom possible in terms of
known special functions).

However, when T*T has continuous spectrum even the formal aspects of
the problem are much less simple. It was remarked in [12, p. 53] that the
solution of problems of the type (i) and (ii) above could in principle be
given in terms of the resolution of the identity on X induced by the self
adjoint operator T* T (or, that on Y induced by TT*). Below we present
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the details of this solution as well as that of the abstract problem of type
(iii) above, i.e., for given y E Y:

(iii)' minimize II Tx - yll over {x E X: lixll ~ M}.

After the completion of the research embodied in this paper, I found that
problem (iii)' had been solved earlier by Rosenblum [11]. I take the liberty
of including my proof of one of Rosenblum's results here because it yields
the result in a slightly different (of course, equivalent) from that is most
convenient for my purposes. Incidentally, Rosenblum's results show, in a
sense, why the adjoint operator T* plays such an important role in
problems of type (i) and (ii) above (which otherwise might seem rather
mysterious): T* arises naturally in the solution of problem (iii'), and
problems of type (i) and (ii) can then be interpreted as studying the
limiting behaviour of the minimizing element x = xMas M -t co. Theorem 1
could easily be deduced from Theorem 2 (due to Rosenblum) but we have
preferred to give a direct proof independent of variational problems.

Our exposition is based on the spectral theorem for bounded self-adjoint
operators on a Hilbert space and the "functional calculus" expressing
bounded Borel functions of the operator in integral form (thorough treat
ments of this may be found, e.g., in the books of Riesz--Nagy [10] or Stone
[1 ]). Presumably most of our results could be pushed through for unboun
ded operators, however, that will be left for a future investigation. On the
other hand, all our results are severely limited to the Hilbert space
framework, so that "reconstruction" problems for HP, bounded analytic
functions etc. as studied, e.g.; in [4, 5, 8, 12] fall outside the scope of the
present paper. Finally, let me emphasize that the aim of this paper is
unification. It shows the "common denominator" in such apparently
diverse investigations as Bergman's doubly orthogonal functions [2J, the
Slepian-Pollak theory of band-limited functions [14], Krein and
Nudelman's reconstruction of an H 2 function in a half-plane from its boun
dary values on an interval [6] as well as studies to the same end by Steiner
[15,16] and van Winter [18], Patil's Toeplitz operator method [10], and
Mats Lindberg's (unpublished) studies of reconstructing an H 2 function in
the unit disc from its values along a diameter and similar problems. For
example, our study reveals that the S1cpian-Pollak integral operator gotten
by first time-limiting and then band-limiting (see Sect. 3) plays exactly the
same role as Patil's Toeplitz operator whose symbol is a characteristic
function of a set -a fact which is easy to miss in view of the very different
contexts of those papers. Thus, while the abstract theory in Section 2 qua
Hilbert space theory is rather simple and perhaps overlaps in places
investigations carried out by others with different purposes in mind I feel
that its unifying role with regard to the circle of problems enumerated
above gives it some measure of novelty and interest.
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2. THE ABSTRACT FRAMEWORK

Throughout this section X, Y denote complex Hilbert spaces and
T: X --+ Y shall always denote a bounded linear operator which satisfies

and

T is injective

im T is dense in Y,

(2.1 )

(2.2)

where, as usual im T ( = TX) denotes the range of T. Then T* is a bounded
linear operator from Y to X, characterized by

(Tx, y>y= (x, T*y>x,

where ( , >x and ( , >y denote the inner products in X, Y respectively, and
from (2.1), (2.2) follow in turn that T* has dense range in X, and is injective.
Likewise the bounded self-adjoint operators A on X, and B on Y defined
by

A:= T*T

B:=TT*

(2.3)

(2.4)

are injective (indeed, strictly positive) and have dense range. Letting E(-)
and F(') denote the resolutions of the identity on X, Y, respectively,
corresponding to A and B we have then, by "functional calculus"

f(A) =r+ o
f(2) dE(2) (2.5)

for all f continuous on [0, L] where L = IIAII (and more generally for
bounded Borel functions) and a similar formula involving B.

Note. in what follows we will usually omit the subscripts in notations
like ( , >x or 11'11 y since the context will make the notations unambiguous.
In like manner we shall denote indifferently by I the identity operators
both in X and Y. Also, sp A denoes the spectrum of a linear operator A.

THEOREM 1. With T as above, for every y E Y the following are
equivalent:

(i) yEimT

(ii) Defining Xc for c>O by

Xc = T*( TT* + eI) -ly ,

Ilxcll are bounded for c> 0.

(2.6)
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(iii)

where M = II TT* II.

(iv) There is an x E X such that

lim Ilxc - xii = o.
c,"o

In this case, moreover,

and Tx= y.

Proof (i) => (ii) Assume y = Tx, x E X. Then

X c = T*(TT* +eI)-1 Tx= T*T(T*T+ el)-l x.

(Here we have used the identity

(TT* + cI) - I T = T( T* T + cI) - I

which follows from the obvious identity

T(T*T+ cI) = (TT* + cI) T

389

(2.8 )

(2.9)

upon multiplying both sides by (TT* + cI) -Ion the left, and (T* T + cI)-1
on the right.) From (2.10) we have Xc = f(A) x, wheref(.tl) = .tl(? + e)-l. By
"functional calculus," Ilf(A)11 cannot exceed the maximum off(..-1.) on sp A,
hence Ilf(A)11 ~ 1 and so Ilxcll ~ Ilxll.

(ii) => (iii) Assume Ilxcll ~ K < 00. Now,

II xcii 2 = <T*(TT* + eI)-ly, T*(TT* + cI)-ly )

= <TT*(TT* + eI)-ly, (TT* + cI)-ly)

= Ilz11 2
,

where

z=g(B)y,

g(..-1.) = ..-1. 1/2(..-1. + c) -I.

640/46/4-5
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(2.11)

and, letting c \a 0, Fatou's lemma gives (2.7).
(iii) =:> (iv) Assume now that (2.7) holds. From the first equality in (2.11)

we see that {xJ is bounded. Hence there is a sequence {c i } with C i \a Osuch
that {xcJ converges weakly, say

x := weak lim XCi'

Hence

Tx= weak lim TT*(TT* +ciI)-1 Y

=B(B+c;I)-ly + wi ,

where Wi --+°weakly in Y. Hence

(B+c;I) Tx=By+Bwi+CiWi

and now i --+ CX) gives BTx = By, whence y = Tx. Therefore (2.10) holds,
and

x-xc=c(T*T+cI)-1 X,

Ilx-xc I1 2
= fC:AY dIIE(A)xI1

2
,

and by Lebesgue's bounded convergence theorem the last integral tends, as
c \a 0, to zero. (Note that for this reasoning to be valid it is necessary that
the measure dIIE(A)xI1 2 place no mass at ),=0, and thus is a consequence
of the injectivity of T* T.) Finally, (2.9) is an evident consequence of (2.11),
(2.7) and Lebesgue's bounded convergence theorem. This completes the
proof of Theorem 1.

Remark. The introduction of the elements

Xc = T*(TT* + cI) Y = (T*T+ cI)-1 T*y (2.12)

is naturally motivated by the observation that (under our assumptions)
Tx = y is equivalent to T* Tx = T*y. This suggests formally X = (T* T)-I
T*y; while this is not meaningful when T fails to be invertible it does
strongly suggest (2.12). Actually, more is true, as Rosenblum discovered: Xc
has an extremal property, as indicated in the next theorem.



A HILBERT SPACE APPROACH 391

THEOREM 2 (Essentially, Rosenblum [10]). For any y E Y with y -# 0 let

(so that 0 < Mo(Y) ~ (0). For any M, 0 < M < M o there is a unique element
XM lying in

B M := {XEX: Ilxli ~M}

minimizing II Tx - y II. Moreover,

XM= T*(TT* + cI)-l y = (T*T + cI)-l T*y,

where c = c(M) is uniquely determined from the equation

(2.13 )

Remark. Clearly the left side of (2.13) increases strictly from 0 to M5 as
c decreases from + 00 to O. Note also that if M o< 00 then, in view of
Theorem 1, the minimum of IITx- yll for xEBMo is zero (and of course, it
is zero for x E B M' M> M o). Theorem 2 can be viewed as a quantitative
sharpening of Theorem 1 whose essence was:

yEim T if and only if Mo(Y) < 00.

Proof of Theorem 2. Since the function

xHIITx-yf

is strictly convex on X, and moreover lower semicontinuous on BM when
this is given the weak topology induced by X (so that B M is then compact)
the existence of a unique minimizing element x M follows. We show first

(2.14)

Indeed, were this not so then for small complex A and arbitrary Z E X,
X M + AZ would be in B M and so

IIT(XM+AZ)- Y112;?; IITx M - yl12

which implies <Tx M- y, Tz) = 0 for all z, i.e., Tx M= Y. We know from
Theorem 1, however, that Tx=y is not solvable for xEBM with M<Mo.
Thus (2.14) holds, and in particular, x M is not O.

Let now ZEX, AEe and
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so that w is well defined and in BM if IAI is small enough. A simple
calculation shows that

w=xM-M- 2Re<xM, AZ) XM+AZ+ O(IAI 2
)

for small IAI. Let us choose Z so that <xM , z) =0, so

and so

IITx M- y112~ IITw- Yl12

= IITx M- Y11 2 +2 Re<TxM- Y, ATz) +NIAI 2

for some constant N, whence

By varying the argument of A we get

whose validity for all small IAI implies <TxM- Y, Tz) =0. Hence
T*TxM-T*y is orthogonal to every vector Z that satisfies <xM,z)=O
and so

T*TxM-T*y= -CXM (2.14)

for some complex constant c.
We shall show momentarily that c > O. Assuming this for the present we

get

and now, since

M 2= <XM, x M) = <TT*(TT* + cI)-ly, TT* + cI)-l y)

= fA(A+c)-2dIlF(A)YI12,

(2.13) is verified, so the proof will be complete once we show c > O.
Verification that c> O. Taking inner products of both sides with x M in

(2.14) gives

(2.15)
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Now, c = 0 is impossible since then (2.14) would yield T*(Tx M - y) = 0
and, in view of the injectivity of T*, Tx M = Y which we know is impossible
for M < Mo(Y). So, we need only show c ~ 0 or, in view of (2.15), that

(2.16 )

holds. Now, for complex 0:, 10:1 :(; 1, o:xME B M and so

II To:x M - y112~ IITx M - Y11 2,

10:1
2

11 Tx M I1
2- 2 Re(ct(TxM , y») + IIYI1 2

~ Tx M 11
2-2 Re(TxM , y) + IIY11 2

,

whence

First, let 10:1 = 1. Then by varying arg 0: we get

so we conclude

is real and ~O.

Now choose 0 < 0: < 1 in (2.17). We get

Dividing by 1 - 0: and letting 0: J' 1 now gives (2.16), and Theorem 2 is com
pletely proved.

Remark. The variational arguments used in this proof are of course
familiar in principle. Apart from Rosenblum's paper [11] similar ideas
appear in earlier work of Davis [3] and many others in the solution of
similar but more special quadratic minimum problems.

THEOREM 3. There is a unitary operator U mapping X onto Y such that

UT*T= TT*U

Proof The following proof was kindly pointed out to me by Lars
Svensson; it is motivated by the "polar decomposition" of a linear
operator, or more precisely by the well-known fact that if T were invertible
then T(T*T)-1/2 would be a unitary operator U satisfying (2.18), as one
easily checks.

Define an operator U on the vector space S:= im(T*T)1/2 by

U(T*T)1/2 X = Tx. (2.1.9 )
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Our hypotheses (2.1), (2.2) imply easily that S is dense in X. Now, for any
~ = (T*T)1/2 x in S,

II U~112 = II Txl1 2= <T*Tx, x) = 11~112.

Hence U is an isometric map from S to im T, and by continuity has a uni
que extension (still denoted by U) which maps X isometrically into Y.
Since im U is closed and contains im T, it is all of Y, so U is unitary.

Finally, since

we have

U(T*T) = T(T*T)1/2,

hence

U(T*T) U* = T(T*T)1/2 U* = TT*

which is equivalent to (2.18).

Remark. Another proof of Theorem 3 (my original proof) is based on a
different way to imitate the nonexistent operator T( T* T) -1/2, namely con
sideration of the operators

Uc := T(T*T +eI)-1/2, e > 0

from X to Y. We obtain by calculations similar to those used in proving
Theorem 1 that

where z = f(A) x and

f(A) = A1/2[(A + e) -1/2 - (A + e')-1/2].

Hence

Now, the last integral is finite for x in a dense subset L of X, and so

lim Ucx=: Ux
c"o
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exists for x E L. Further calculations show that U is isometric on L and has
range dense in Y, and therefore extends to a unitary map from X --+ Y
which satisfies (2.18). We leave the remaining details of this variant to the
reader.

THEOREM 4. Let K denote the spectrum of T* T (which coincides with
that of TT* in view of the unitary equivalence of these operators asserted by
Theorem 3). For every bounded Borel function f on an interval including K we
have

Tf(T*T) = f(TT*) T.

Proof From the obvious identity

T(T*Tt = (TT*t T

(2.20)

we get (2.20) for polynomials f The general case follows from the fact that
to every bounded Borel function f on a bounded interval J there is a
sequence of polynomials {Pj} such that p/x)--+f(x) for XEJ and the p.!
are uniformly bounded on J, together with standard facts from "functional
calculus" of self-adjoint operators.

COROLLARY 1. For any Borel set L1 c lR the projectors E(L1), F(A)
corresponding to the resolutions of the identity determined by T*T, TT* on
X, Y respectively satisfy

TE(L1) = F(L1) T (2.21 )

Proof Obviously we may assume L1 is bounded. Choose for f in (2.20)
the function equal to 1 on L1 and 0 elsewhere. Formulas relating E( L1) and
F(L1), somewhat different from (2.21), and suggested to me by Mats
Lindberg, are given in

COROLLARY 2. Let L1 be a Borel set of positive real numbers whose
closure does not contain O. Then

F(L1 ) = T (L 2- 1 dE(2)) T,

E(L1) = T* (L 2-1 dF(2) T.

Proof Clearly it suffices to prove (2.23). Choose, in Theorem 4,

f(2) = 2-11.A2),

(2.22)

(2.23 )
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where ILl is the characteristic function of LI. We get, applying T* on the left
to both sides of (2.20)

T* Tf( T* T) = T*f( TT*) T

whence

lAT*T) = T* (f f(A) dF(A)JT

which is (2.23).

Remark. The following related fact is sometimes useful: if R is a linear
operator on Y that commutes with TT* then T*RT is a linear operator on X
that commutes with T*T. The proof of this (and the analogous fact with
roles of X and Y reversed) is obvious.

Finally, the following elementary result gives a version of "double
orthogonality" in the case where TT* need not be compact.

THEOREM 5. If XI is a subspace of X invariant under T*T, and Xl> X2 are
vectors in X such that x I E Xl> X2 EXt, then

Proof We have

since by hypothesis T* Tx I E XI.

COROLLARY. If XI' Xl are eigenvectors of T*T corresponding to different
eigenvalues then

In concluding this section, observe that the results in [13] when TT* is
compact are special cases of those in the present paper. For example, if
TT* is compact with eigenvalues {An} and corresponding orthonormal
eigenvectors {en} C Y, then (2.7), the necessary and sufficient condition for
y to be in the range of T, becomes

in conformity with the "abstract Bergman theorem" of [13] (where the
notations are somewhat different).
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Note also that there exist other necessary and sufficient conditions for
y E im T besides that given by Theorem L A very simple one, valid for any
bounded linear operator T: X --+ Y, which was employed in [7], is

PROPOSITION. A necessary and sufficient condition for y to lie in im T,
where T is any bounded linear transformation from X --+ Y, is the existence of
a constant M such that

1(y, z)1 ~ MIIT*zll (2.24)

for every z E Y.

This criterion (whose very simple proof we omit) extends to unbounded
operators, and also (with slight reformulation of (2.24)) to the case where
X and Y are Banach spaces. If Y is separable it is enough to check (2.24)
for a countable dense set of z, which gives a basis for algorithms to test
whether y E im T. A different criterion based on inequalities involving
duality was suggested in [13, Sect. 5].

3. EXAMPLES

3.1

We look first at the case where X is the Hardy space H 2
( [])) discussed in

the Introduction, and E is a Borel set c []) such that the restriction map

(3.1 )

is a bounded map from H 2
( [])) --+ L 2(E; df-l). For cp E L 2(E; df-l) we can com·

pute T*cp from

(T*cp, k) = (cp, Tk),

where for k we take

the "reproducing element" at ( (this procedure to calculate T* is applicable
wherever X is a Hilbert function space with reproducing kernel (r.k.)), and
we get

(T*cp)(O= (2n)-1 t (1-z0- 1 cp(z) df-l(z).

Thus, T* is an integral operator. If, for example, E = (-1, 1) and J1 is one-
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dimensional Lebesgue measure, the abstract considerations of Section 2
revolve about the spectral resolution of the self-adjoint operator B = TT*
on L 2( -1, 1) defined by

(Bcp)(x) = (2n)-1r (l-xx')cp(x')dx'.
-1

This problem, as well as the analogous problem for L2(0, 1) have been
completely solved by Mats Lindberg (unpublished), who also has partial
results on the (compact) case where

O<a<1.

If E is a set with interior, for example a subdomain of [D, then the
natural "target space" Y would be a space of analytic functions on E, for
example the Hardy space H 2(E), or other Hilbert space (like a Bergman, or
weighted Bergman) space, so chosen that (3.1) has dense range. (To handle
some problems where It does not lie in [D it would be desirable to extend
the theory in Section 2 to unbounded T).

3.2

Denoting by lr the unit circle, let X = H 2(lr), the Hardy space of
functions in L 2(lr) whose Fourier coefficients of negative index vanish. Let
E c lr be a measurable set of positive Haar measure and Y = L2(E; de)
where de denotes Haar measure. Let

be the restriction map. To calculate T* it is convenient to introduce the
operator P which projects L 2(lr) orthogonally on H2(lr). For cp E L 2(E; de)
we get

f" (T*cp )(e)f(e) de =f cp(e)f(e) de = f2" ij>(e)f(e) de,
o E 0

where ijJ EL 2(lr) is gotten by extending qJ to be zero on lr\E. Hence
T*qJ - ij> is orthogonal to H2(lr), i.e.,

0= P(T*qJ - ij» = T*cp - Pij>

whence

T*qJ =Pij>.

For f E H 2(lr) we get, putting qJ = Tf in (3.2),

T*Tf=P(l E f),

(3.2)

(3.3 )
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where l E is the characteristic function of E. Hence we see: T*T is the
Toeplitz operator on H 2(lf) with symbol l E • If we were to use a weight
function in the target Hilbert space we would similarly get for T*T
Toeplitz operators with other kinds of symbols. Thus, restriction-extension
problems in this set-up are equivalent to the spectral resolution of certain
self-adjoint Toeplitz operators. Complete results are known, apparently,
only when E is an interval (see, e.g., [6, 18]).

In an analogous way, when X = L~(D), the square-integrable functions
analytic on the plane domain D, and Y = L;(Do) with Do c D, with T being
the restriction map fl--+ fl Do' T* T is a "Bergman-Toeplitz" operator
(expressible as an integral operator since X has r.k.).

3.3

Perhaps the best studied example is that due to Slepian and Pollak [14],
where X = B w, the space of "band-limited functions," i.e., the set of

f(t)=f
W

F(w)ei1Wdw
-w

for some FE L 2( - W, W). Here W is a positive parameter. The norm in B w

is given by

If ,> 0 is another positive parameter we take Y = L 2( -', ,) and T is the
restriction operator fl--+ fi (_",).

Here B w is a r.k. Hilbert space with reproducing element

and calculation as in paragraph 3.1 gives, for cp E L 2( -T, ,),

J
t sin Wet - s)

(T*cp )(t) = n- 1
. cp(s) ds,

_, t-s
tE R (3.4)

In the analysis of Pollak-Slepian the adjoint operator T* is not
introduced explicitly, instead they work in terms of a "time-limiting
operator"

(3.5)
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on L 2 (1R) and "band-limiting operator" on L 2 (1R) defined by

(Lwf)(t) = fW !(w) eitw dw=n- 1f'" sin W(t-s) 'f(s) ds, (3.6)
-w -00 t-s

where

!(w):= (2n)-1 foo f(t) e- itw dt
-00

(their notations are somewhat different).
From (3.4), (3.5), (3.6) we see that

so that their analysis, based on spectral resolution of the self-adjoint
operator L WZT on the Hilbert space B w, which is an integral operator
with kernel

(n -1) 1 . sin W( t - s)
(-T,T) t-s '

is identical with that to which our general point of view would lead in this
situation.

It is remarkable that in this case (where T*T is compact) the eigen
functions turn out to be the eigenfunctions of a certain Sturm-Liouville
problem. The same thing happens in the problems referred to in subsec
tion 3.1 studied by Lindberg, and several other analogous problems. This
leads to the following general question: Suppose Y = L 2(J; dz) where J is
some interval on IR (X being arbitrary). For which T: X -+ Y does the second
commutator of TT* contain a nontrivial differential operator? We recall that
the "functions of TT*," i.e., operators defined by

f f(2) dF(2),

where f is a real-valued, and in general unbounded, Borel function com
prise (with suitable assumptions, see [10, Sect. 127-l29J) all densely
defined closed self-adjoint operators on Y which commute with all
operators commuting with TT* (so-called second commutator of TT*). It
is remarkable that, in the special situations just enumerated, this functional
calculus includes nontrivial second-order differential operators and it
would be of interest to know just how typical, or exceptional, this is.
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4. FURTHER HORIZONS

401

Apart from the last-mentioned question there is another rather general
question that can be raised in connection with Theorem 1. It is well known
that, besides the "classical" form of the spectral theorem we have used,
there is another formulation based on the point of view of "diagonalizing"
a self-adjoint operator, i.e., setting up a unitary equivalence between it and
an operator of multiplication by a real-valued function on a suitable L 2

space.
This point of view leads most naturally not to the family of projections

E(A) as in the classical spectral theorem but rather to expansions of
elements in the original Hilbert space in terms of "singular eigenfunctions"
that do not belong to that space. This gives in principle the possibility, in
"restriction" problems where T*T is not compact, to formulate results
analogous to those in Theorem 1 in terms of (generalized) eigenfunctions
expansions, whieh are more tangible than the "resolutions of the identity"
that we have employed. We should thus expect a theorem formally similar
to the "abstract Bergman theorem" of [13], restoring the role of doubly
orthogonal eigenfunctions but with infinite series replaced by integral
transforms. The results achieved by Krein and Nudelman [6], van Winter
[18], Lindberg and others in various special problems point strongly to
the existence of this general theorem, to which I hope to return on another
occasion. (A somewhat old, but useful introduction to generalized eigen
functions is L. Garding's article "Eigenfunction expansions" in [1].)
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